
Anna Philippou and Kyriaki Psara
Department of Computer Science

University of Cyprus

Token Multiplicity in Reversing Petri Nets
Under the Individual Token Interpretation

Monday, 12th September EXPRESS/SOS 2022 1

Reversible computation

• Unconventional form of computing where computation can run
backwards as naturally as it can go forwards
– Every set of instructions has the ability to be carried out in reverse order

• Origins
– Landauer 1960: logically irreversible operations result in bit erasure that causes

heat dissipation, i.e. loss of energy
– Reversible logic gates and circuits may lead to low-energy computing

• Applications
– Program debugging and testing
– Programming abstractions for fault-tolerant systems

• transactions, system-recovery schemes, checkpoint-rollback protocols

– Biological modelling, robotics, quantum computation, etc.

2

Formal models for reversible computation

• Investigate the theoretical foundations of reversibility

• Develop computation models for reversible systems and
techniques for their analysis
– Process calculi, event structures, Petri nets, …

• Forms of reversibility
– Backtracking: executing past actions in the exact inverse order in which

they occurred
– Causal-order reversibility: an action can be undone if all its effects have

already been reversed
– Out-of-causal-order reversibility: actions can be undone in an out-of-

causal order

3

Petri nets (PNs)

• A powerful graphical language for discrete event systems

• Rich mathematical theory

• Wide variety of tools

• A PN consists of
– A set of places
– A set of transitions
– A set of edges
– A set of tokens

A transition can fire if the places incoming to the transition have
tokens. The effect of firing a transition is to transfer the tokens
from the incoming places to the outgoing places.

4

t1
t2

t3

Reversing computation in PNs – challenges

• What does one need to remember in order to reverse transitions in
PNs?

• How do we identify legitimate backward moves?

• Key challenges: backward conflicts and causality

5

t1

t2

t

In our previous work…

• Reversing Petri Nets (RPNs)
– High-level Petri nets with individual tokens that satisfy the conservativeness property,

where functions form bonds between tokens
– Support backtracking, causal-order, and out-of-causal order reversibility

• Individual tokens
– Each token is identified by its name/type: a, b, …
– Tokens are preserved
– Tokens can be bonded together: a-b, b-c, …

• Transitions
– Move tokens from incoming to outgoing places
– May form or break bonds between tokens
– Reversing a transition involves destroying/creating the bonds created/destroyed by the transition

and returning tokens from outgoing to incoming places

• Histories
– Transitions are associated with keys, which capture the order in which transitions were executed
– Convey information to resolve backward nondeterminism and establish a causality

relation
– A state is a pair ⟨M,H⟩ where M is the marking and H the history

6

Execution

• Forward execution:
– A transition may be executed if the required tokens are available
– Tokens and their connected components are transferred from the

incoming to the outgoing places of the transition
– Bonds can be created/destroyed

7

• Causal-order reversing:
– A transition can be reversed if all transition occurrences it has caused

have already been reversed
– Tokens and their connected components are moved from the outgoing

places of the transition to its incoming places
– Bonds created/broken by the transition are broken/created

𝑀,𝐻 →
!
𝑀′, 𝐻′

𝑀, 𝐻 →
!
" 𝑀′, 𝐻′

Example – Pen assembly/disassembly

8

t2t1

u

v

x

c

i
i-c c

y
i

c

b
b

c-b

• System with three components:
– The ink, i
– The cup, c
– The button, b

Example – Pen assembly/disassembly

8

t2t1

u

v

x

c

i
i-c c

y

b
b

c-b

• System with three components:
– The ink, i
– The cup, c
– The button, b

c
i

{1}

After executing t1

Example – Pen assembly/disassembly

8

• System with three components:
– The ink, i
– The cup, c
– The button, b

t2t1

u

v

x

c

i
i-c c

y

i
c

b
b

c-b

{1} {2}

After executing t2.

Transition t1 has caused transition t2.

Example – Pen assembly/disassembly

8

t2t1

u

v

x

c

i
i-c c

y

b
b

c-b

• System with three components:
– The ink, i
– The cup, c
– The button, b

c
i

{1}

Only transition t2 can be reversed

Two pens?

9

• RPNs feature named tokens that are pairwise distinct
– There exists exactly one token of each “type”

• How can we model a system with two pens?

• RPN with six tokens:
– The inks, i1, i2

– The cups, c1, c2

– The buttons, b1, b2

Two pens?

10

t2,1t1,1

u

v

x

c1

i1 i1-c1 c1
y

i1

c1

b1

b1

c1-b1

t2,2t1,2

u'

v'

x'

c2

i2 i2-c2 c2
y

i2

c2

b2

b2

c2-b2

Tokens of the same type should be indistinguishable.

Two pens

11

t1,1,1u

v

x

c1

i1

i1-c1i1

c1

i2

c2

t1,2,1

t1,1,2

t1,2,2

i1-c2

i2-c1

i2-c2

i1

c1

c2

c2

i2

i2

t2,1,1
c1

y

b1

b1c1-b1

b2

t2,2,1
c2

b1

c2-b1

t2,1,2
c1 b2

c1-b2

t2,2,2c2
b2

c2-b2

Introducing multiple tokens

12

t1
a

at2
a a a

x y z{1} {2}
a

• Has t1 caused t2?

• Two approaches to token multiplicity
– Individual-token interpretation: each token is considered unique and is identified by

its causal path
– Collective-token interpretation: tokens of the same type are considered as identical

• Is it possible to reverse t1?
– Individual-token interpretation: It depends on which a was used to fire t2

– Collective-token interpretation: Yes (as long as there is an available token)

Individual-token interpretation

• Token types
– Multiple instances of a token type may exist in a net
– Token instances of the same type have the same capabilities

• Arcs are associated with typed variables
– u:A : request for a token of type A

• Tokens instances carry their causal path
– (A, i, [(k1,t1,v1),…,(kn,tnvn)]): token of type A has participated in transitions

t1,..,tn, with keys k1,..,kn forming variable associations with v1,...,vn

13

t
i-c

i:I

c:C

u

v

(I,1,[])
(I,2,[])

(C,1,[])
(C,2,[])

x

Forward execution

• A transition is enabled if:
– There is a collection of token/bond instances in the incoming places of the transition

that can be instantiated to the incoming variables of the transition.

• Firing a transition results in:
– Transferring all relevant tokens from the incoming places to the outgoing places and

creating/destroying bonds as specified by the transition
– Extending the history of the transition with the next available key in ascending

order
– Updating the causal path of the tokens involved in the newly-executed transition

t

u

v

x

c:C

i:I
i-c

(I,1,[])
(I,2,[])

(C,1,[])
(C,2,[])

t
t

u

v

x

c:C

i:I
i-c

(I,2,[])

(C,1,[])

(C,2,[i,t,1])
{1}

(I,1,[c,t,1])

14

Causal-order reversing

• A causal link exists between two transitions if one produces tokens used to fire
the other

• A transition occurrence can be reversed if:
– All the tokens/bond instances involved in firing the occurrence have not engaged in any further

transitions or, if they did, these transitions have been reversed

• Reversing a transition results in:
– Transferring all relevant token/bond instances from the outgoing places to the incoming places

forming/breaking bonds as necessary
– The history of the transition is updated by removing the key of the reversed transition occurrence
– Updating the causal path of the tokens by removing the record of the reversed transition

15

t(C,2,[c,t,1])
(I,1,[i,t,1])

t

u

v

x

c:C

i:I

i-c

{1,2}

(C,1,[c,t,2])
(I,2,[i,t,2])

t

u

v

c:C

i:I
i-c

(I,1,[])

(C,2,[])

{2}

x

(C,1,[c,t,2])
(I,2,[i,t,2])

Loop Lemma
For any forward transition there is a
causal-order reverse transition , and vice
versa.

Causal-order reversibility

16

〈M ,H 〉 t⎯→⎯ 〈M ',H '〉
〈M ',H '〉 t⎯→⎯ c 〈M ,H 〉

t

t

〈M ,H 〉 〈M ',H '〉

…

Parabolic Lemma
For any execution where σ is a
sequence of both forward and reverse transitions, there exists

where r is a sequence
of reverse actions and r’ a sequence of forward actions.

Causal-order reversibility

17

〈M ,H 〉 σ⎯ →⎯ 〈M ',H '〉

〈M ,H 〉 r⎯→⎯ 〈M '',H ''〉 r '⎯ →⎯ 〈M ',H '〉

ß
〈M ,H 〉 〈M ',H '〉

〈M ,H 〉 〈M ',H '〉

Causal Consistency Theorem
Two sequences of transitions lead to the “same” states

,
if and only if σ1 and σ2 differ only by reordering of independent
transitions and inserting or removing pairs of opposite actions.

Causal-order reversibility

18

〈M ,H 〉 σ1⎯ →⎯ 〈M ',H '〉 〈M ,H 〉 σ 2⎯ →⎯ 〈M ',H '〉

Multiple vs single tokens

• What is the expressiveness relation between MPRNs and RPNs?

Α Labelled Transition system (LTS) is a tuple (Q,E,→,I) where
• Q is a countable set of states
• E is a countable set of actions
• → is the step transition relation
• I is the initial state

Two LTSs (Q1,E1,→1,I1) (Q2,E2,→2,I2) are isomorphic if they
differ only in the names of their states and events, i.e. if there
are bijections γ:Q1→Q2 and η:Ε1→Ε2 such that γ(Ι1) = Ι2 and

p →
#
1 q if and only if γ(p)

$(#)
2 γ(q).

19

Multiple vs single tokens

• An SRPN is an MPRN where each token type contains exactly one
token instance.

Theorem 1
For each MRPN exists an equivalent SRPN and vice versa.

Theorem 2
For each SRPN exists an equivalent RPN and vice versa.

Two nets are equivalent to each other if they give rise to isomorphic LTSs.

20

Theorem 1 – Proof idea (1)

It is possible to construct a translation from MRPNs to SRPNs by
• creating a distinct SRPN token type for each MRPN token instance, and
• cloning transitions for each token type combination

Example:

≈t

u

v

x

c:C

i:I

i-c

(I,1,[])
(I,2,[])

(C,1,[])
(C,2,[])

t1,1u

v

c:C1

i:I1

i-c
(I1,1,[])
(I2,1,[])

(C1,1,[])
(C2,1,[])

t1,2

t2,1

t2,2

i:I1

i:I2

i:I2

c:C2

c:C1

c:C2

x
i-c

i-c

i-c

21

Theorem 1 – Proof idea (2)

Bijections to capture the isomorphism of the respective LTSs can be
established by associating
• tokens instances of MPRNs to those of SRPNs, and
• transition occurrences of MRPNs with transitions of SRPNs

Example continued:

≈⟨M0,H0⟩

(t,S1)

(t,R1)
(t,R2) (t,S2)

(t,S4)
(t,S3)

(t,R4)

(t,R3)
⟨M0’,H0’
⟩ (t1,1,S1’)

(t1,1,R1’)

(t1,2,R2’) (t1,2,S2’)

(t2,2,S4’)

(t2,1,S3’)

(t2,2,R4’)

(t2,1,R3’)

22

Conclusions

• An approach to reversing computation in Petri nets based on the concept
of bonds

• RPNs with multiple tokens under the individual-token interpretation
– Tokens of the same type can fire any eligible transition when going forward, but only the

transitions they have fired when going backward
– A transition occurrence can reverse in causal order if it was the last transition executed by all

the tokens it has involved
– All information needed for reversal is captured locally as histories in tokens - no need for

global control

• Multiple tokens do not increase the expressiveness of the model

• Backtracking and out-of-causal-order reversibility also considered [Psara 2021]

• RPNs with multiple tokens under the collective-token interpretation [PP-TCS 2022]

– local, out-of-causal-order type of reversibility

23

On-going and future work

• Relationship between RPNs and Colored Petri Nets [BGMPPP 2018,
BGMPPP 2022]

• Tool development
– Prototype simulator
– Translation into ASP [DKPP 2020]

– Model checking and analysis techniques

• Applications
– Applications from biochemistry (the autoprotolysis of water, the ERK signaling

pathway, the ammonium potassium pump) [KACPPU 2020, PP-JLAMP 2022, PP-TCS 2022]

– Distributed algorithm for antenna selection in MIMO systems [PPS 2020, SPP 2020]

– Transaction-processing systems [Psara 2021]

24

Thank you! Questions?

